56 research outputs found

    Soft Null Hypotheses: A Case Study of Image Enhancement Detection in Brain Lesions

    Get PDF
    This work is motivated by a study of a population of multiple sclerosis (MS) patients using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to identify active brain lesions. At each visit, a contrast agent is administered intravenously to a subject and a series of images is acquired to reveal the location and activity of MS lesions within the brain. Our goal is to identify and quantify lesion enhancement location at the subject level and lesion enhancement patterns at the population level. With this example, we aim to address the difficult problem of transforming a qualitative scientific null hypothesis, such as "this voxel does not enhance", to a well-defined and numerically testable null hypothesis based on existing data. We call the procedure "soft null hypothesis" testing as opposed to the standard "hard null hypothesis" testing. This problem is fundamentally different from: 1) testing when a quantitative null hypothesis is given; 2) clustering using a mixture distribution; or 3) identifying a reasonable threshold with a parametric null assumption. We analyze a total of 20 subjects scanned at 63 visits (~30Gb), the largest population of such clinical brain images

    Structured Functional Principal Component Analysis

    Get PDF
    Motivated by modern observational studies, we introduce a class of functional models that expands nested and crossed designs. These models account for the natural inheritance of correlation structure from sampling design in studies where the fundamental sampling unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for ultra-high dimensional data. Methods are illustrated in three examples: high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep

    Adaptive data-driven selection of sequences of biological and cognitive markers in pre-clinical diagnosis of dementia.

    Get PDF
    Effective clinical decision procedures must balance multiple competing objectives such as time-to-decision, acquisition costs, and accuracy. We describe and evaluate POSEIDON, a data-driven method for PrOspective SEquentIal DiagnOsis with Neutral zones to individualize clinical classifications. We evaluated the framework with an application in which the algorithm sequentially proposes to include cognitive, imaging, or molecular markers if a sufficiently more accurate prognosis of clinical decline to manifest Alzheimer's disease is expected. Over a wide range of cost parameter data-driven tuning lead to quantitatively lower total cost compared to ad hoc fixed sets of measurements. The classification accuracy based on all longitudinal data from participants that was acquired over 4.8 years on average was 0.89. The sequential algorithm selected 14 percent of available measurements and concluded after an average follow-up time of 0.74 years at the expense of 0.05 lower accuracy. Sequential classifiers were competitive from a multi-objective perspective since they could dominate fixed sets of measurements by making fewer errors using less resources. Nevertheless, the trade-off of competing objectives depends on inherently subjective prescribed cost parameters. Thus, despite the effectiveness of the method, the implementation into consequential clinical applications will remain controversial and evolve around the choice of cost parameters

    Improving Reliability of Subject-Level Resting-State fMRI Parcellation with Shrinkage Estimators

    Full text link
    A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often used for defining the network nodes in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage estimators of such measures, allowing the noisy subject-specific estimator to "borrow strength" in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw intervoxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. Our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets---a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute rsfMRI scans from 20 subjects---we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor cortex by up to 30%.Comment: body 21 pages, 11 figure

    Distance-Based Analysis of Variance for Brain Connectivity

    Get PDF
    The field of neuroimaging dedicated to mapping connections in the brain is increasingly being recognized as key for understanding neurodevelopment and pathology. Networks of these connections are quantitatively represented using complex structures including matrices, functions, and graphs, which require specialized statistical techniques for estimation and inference about developmental and disorder-related changes. Unfortunately, classical statistical testing procedures are not well suited to high-dimensional testing problems. In the context of global or regional tests for differences in neuroimaging data, traditional analysis of variance (ANOVA) is not directly applicable without first summarizing the data into univariate or low-dimensional features, a process that may mask salient features of the high-dimensional distributions. In this work, we consider a general framework for two-sample testing of complex structures by studying generalized within- and between-group variances based on distances between complex and potentially high-dimensional observations. We derive an asymptotic approximation to the null distribution of the ANOVA test statistic, and conduct simulation studies with scalar and graph outcomes to study finite sample properties of the test. Finally, we apply our test to our motivating study of structural connectivity in autism spectrum disorder

    Sociodemographic, Health and Lifestyle, Sampling, and Mental Health Determinants of 24-Hour Motor Activity Patterns:Observational Study

    Get PDF
    Background: Analyzing actigraphy data using standard circadian parametric models and aggregated nonparametric indices may obscure temporal information that may be a hallmark of the circadian impairment in psychiatric disorders. Functional data analysis (FDA) may overcome such limitations by fully exploiting the richness of actigraphy data and revealing important relationships with mental health outcomes. To our knowledge, no studies have extensively used FDA to study the relationship between sociodemographic, health and lifestyle, sampling, and psychiatric clinical characteristics and daily motor activity patterns assessed with actigraphy in a sample of individuals with and without depression/anxiety. Objective: We aimed to study the association between daily motor activity patterns assessed via actigraphy and (1) sociodemographic, health and lifestyle, and sampling factors, and (2) psychiatric clinical characteristics (ie, presence and severity of depression/anxiety disorders). Methods: We obtained 14-day continuous actigraphy data from 359 participants from the Netherlands Study of Depression and Anxiety with current (n=93), remitted (n=176), or no (n=90) depression/anxiety diagnosis, based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders, fourth edition. Associations between patterns of daily motor activity, quantified via functional principal component analysis (fPCA), and sociodemographic, health and lifestyle, sampling, and psychiatric clinical characteristics were assessed using generalized estimating equation regressions. For exploratory purposes, function-on-scalar regression (FoSR) was applied to quantify the time-varying association of sociodemographic, health and lifestyle, sampling, and psychiatric clinical characteristics on daily motor activity. Results: Four components of daily activity patterns captured 77.4% of the variability in the data: overall daily activity level (fPCA1, 34.3% variability), early versus late morning activity (fPCA2, 16.5% variability), biphasic versus monophasic activity (fPCA3, 14.8% variability), and early versus late biphasic activity (fPCA4, 11.8% variability). A low overall daily activity level was associated with a number of sociodemographic, health and lifestyle, and psychopathology variables: older age (P<.001), higher education level (P=.005), higher BMI (P=.009), greater number of chronic diseases (P=.02), greater number of cigarettes smoked per day (P=.02), current depressive and/or anxiety disorders (P=.05), and greater severity of depressive symptoms (P<.001). A high overall daily activity level was associated with work/school days (P=.02) and summer (reference: winter; P=.03). Earlier morning activity was associated with older age (P=.02), having a partner (P=.009), work/school days (P<.001), and autumn and spring (reference: winter; P=.02 and P<.001, respectively). Monophasic activity was associated with older age (P=.005). Biphasic activity was associated with work/school days (P<.001) and summer (reference: winter; P<.001). Earlier biphasic activity was associated with older age (P=.005), work/school days (P<.001), and spring and summer (reference: winter; P<.001 and P=.005, respectively). In FoSR analyses, age, work/school days, and season were the main determinants having a time-varying association with daily motor activity (all P<.05). Conclusions: Features of daily motor activity extracted with fPCA reflect commonly studied factors such as the intensity of daily activity and preference for morningness/eveningness. The presence and severity of depression/anxiety disorders were found to be associated mainly with a lower overall activity pattern but not with the time of the activity. Age, work/school days, and season were the variables most strongly associated with patterns and time of activity, and thus future epidemiological studies on motor activity in depression/anxiety should take these variables into account
    corecore